Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 565
Filtrar
1.
Nature ; 629(8010): 98-104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693411

RESUMO

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Assuntos
Aminoácidos , Biocatálise , Acoplamento Oxidativo , Processos Fotoquímicos , Aminoácidos/biossíntese , Aminoácidos/química , Aminoácidos/metabolismo , Biocatálise/efeitos da radiação , Evolução Molecular Direcionada , Radicais Livres/química , Radicais Livres/metabolismo , Glicina/química , Glicina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/química , Indicadores e Reagentes , Luz , Acoplamento Oxidativo/efeitos da radiação , Fosfato de Piridoxal/metabolismo , Estereoisomerismo , Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo
2.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696020

RESUMO

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Assuntos
Clorofila , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Fotossíntese , Estresse Salino , Tolerância ao Sal , Plântula , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/fisiologia , Cucumis sativus/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Salino/genética , Clorofila/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Antioxidantes/metabolismo , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas , Inativação Gênica
3.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656254

RESUMO

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Assuntos
Endorribonucleases , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glucose , Glutamina , Fosfoglicerato Desidrogenase , Monoéster Fosfórico Hidrolases , Proteínas Serina-Treonina Quinases , Serina , Transaminases , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Serina/biossíntese , Transdução de Sinais
4.
Methods Enzymol ; 696: 199-229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658080

RESUMO

Fluorine (F) is an important element in the synthesis of molecules broadly used in medicine, agriculture, and materials. F addition to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to produce fluorometabolites (such as fluorinated amino acids, key building blocks for synthesis) are relatively scarce. This chapter discusses the use of L-threonine aldolase enzymes (LTAs), a class of enzymes that catalyze reversible aldol addition to the α-carbon of glycine. The C-C bond formation ability of LTAs, together with their known substrate promiscuity, make them ideal for in vitro F biocatalysis. Here, we describe protocols to harness the activity of the low-specificity LTAs isolated from Escherichia coli and Pseudomonas putida on 2-fluoroacetaldehyde to efficiently synthesize 4-fluoro-L-threonine in vitro. This chapter also provides a comprehensive account of experimental protocols to implement these activities in vivo. These methods are illustrative and can be adapted to produce other fluorometabolites of interest.


Assuntos
Escherichia coli , Halogenação , Pseudomonas putida , Especificidade por Substrato , Escherichia coli/enzimologia , Escherichia coli/genética , Pseudomonas putida/enzimologia , Biocatálise , Aminoácidos/química , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/genética , Treonina/química , Treonina/metabolismo , Treonina/análogos & derivados , Flúor/química , Aldeídos/química , Aldeídos/metabolismo
5.
Adv Sci (Weinh) ; 11(18): e2307834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460155

RESUMO

Targeting cancer-specific metabolic processes is a promising therapeutic strategy. Here, this work uses a compound library that directly inhibits metabolic enzymes to screen the potential metabolic targets in lung adenocarcinoma (LUAD). SHIN1, the specific inhibitor of serine hydroxymethyltransferase 1/2 (SHMT1/2), has a highly specific inhibitory effect on LUAD cells, and this effect depends mainly on the overexpression of SHMT2. This work clarifies that mitogen-activated protein kinase 1 (MAPK1)-mediated phosphorylation at Ser90 is the key mechanism underlying SHMT2 upregulation in LUAD and that this phosphorylation stabilizes SHMT2 by reducing STIP1 homology and U-box containing protein 1 (STUB1)-mediated ubiquitination and degradation. SHMT2-Ser90 dephosphorylation decreases S-adenosylmethionine levels in LUAD cells, resulting in reduced N6-methyladenosine (m6A) levels in global RNAs without affecting total protein or DNA methylation. Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq) analyses further demonstrate that SHMT2-Ser90 dephosphorylation accelerates the RNA degradation of oncogenic genes by reducing m6A modification, leading to the inhibition of tumorigenesis. Overall, this study elucidates a new regulatory mechanism of SHMT2 during oncogenesis and provides a theoretical basis for targeting SHMT2 as a therapeutic target in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenosina , Carcinogênese , Glicina Hidroximetiltransferase , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Fosforilação/genética , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças
6.
Nat Commun ; 15(1): 1163, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331894

RESUMO

The role of the serine/glycine metabolic pathway (SGP) has recently been demonstrated in tumors; however, the pathological relevance of the SGP in thyroid cancer remains unexplored. Here, we perform metabolomic profiling of 17 tumor-normal pairs; bulk transcriptomics of 263 normal thyroid, 348 papillary, and 21 undifferentiated thyroid cancer samples; and single-cell transcriptomes from 15 cases, showing the impact of mitochondrial one-carbon metabolism in thyroid tumors. High expression of serine hydroxymethyltransferase-2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is associated with low thyroid differentiation scores and poor clinical features. A subpopulation of tumor cells with high mitochondrial one-carbon pathway activity is observed in the single-cell dataset. SHMT2 inhibition significantly compromises mitochondrial respiration and decreases cell proliferation and tumor size in vitro and in vivo. Collectively, our results highlight the importance of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer and suggest that SHMT2 is a potent therapeutic target.


Assuntos
Multiômica , Neoplasias da Glândula Tireoide , Humanos , Glicina Hidroximetiltransferase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Redes e Vias Metabólicas/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
7.
Cell Metab ; 36(1): 116-129.e7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171331

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects one-third of the global population. Understanding the metabolic pathways involved can provide insights into disease progression and treatment. Untargeted metabolomics of livers from mice with early-stage steatosis uncovered decreased methylated metabolites, suggesting altered one-carbon metabolism. The levels of glycine, a central component of one-carbon metabolism, were lower in mice with hepatic steatosis, consistent with clinical evidence. Stable-isotope tracing demonstrated that increased serine synthesis from glycine via reverse serine hydroxymethyltransferase (SHMT) is the underlying cause for decreased glycine in steatotic livers. Consequently, limited glycine availability in steatotic livers impaired glutathione synthesis under acetaminophen-induced oxidative stress, enhancing acute hepatotoxicity. Glycine supplementation or hepatocyte-specific ablation of the mitochondrial SHMT2 isoform in mice with hepatic steatosis mitigated acetaminophen-induced hepatotoxicity by supporting de novo glutathione synthesis. Thus, early metabolic changes in MASLD that limit glycine availability sensitize mice to xenobiotics even at the reversible stage of this disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado Gorduroso , Animais , Camundongos , Acetaminofen/toxicidade , Carbono , Glutationa/metabolismo , Glicina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Serina/metabolismo
8.
Bioresour Technol ; 393: 130153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052329

RESUMO

L-serine is a high-value amino acid widely used in the food, medicine, and cosmetic industries. However, the low yield of L-serine has limited its industrial production. In this study, a cellular factory for efficient synthesis of L-serine was obtained by engineering the serine hydroxymethyltransferases (SHMT). Firstly, after screening the SHMT from Alcanivorax dieselolei by genome mining, a mutant AdSHMTE266M with high thermal stability was identified through rational design. Subsequently, an iterative saturating mutant library was constructed by using coevolutionary analysis, and a mutant AdSHMTE160L/E193Q with enzyme activity 1.35 times higher than AdSHMT was identified. Additionally, the target protein AdSHMTE160L/E193Q/E266M was efficiently overexpressed by improving its mRNA stability. Finally, combining the substrate addition strategy and system optimization, the optimized strain BL21/pET28a-AdSHMTE160L/E193Q/E266M-5'UTR-REP3S16 produced 106.06 g/L L-serine, which is the highest production to date. This study provides new ideas and insights for the engineering design of SHMT and the industrial production of L-serine.


Assuntos
Escherichia coli , Glicina Hidroximetiltransferase , Escherichia coli/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Serina/genética , Serina/metabolismo , Engenharia Metabólica
9.
Chemistry ; 30(10): e202302959, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38012090

RESUMO

A two-enzyme cascade system containing ω-transaminase (ω-TA) and L-threonine aldolase (L-ThA) was reported for the synthesis of 3-Phenylserine starting from benzylamine, and PLP was utilized as the only cofactor in these both two enzymes reaction system. Based on the transamination results, benzylamine was optimized as an advantageous amino donor as confirmed by MD simulation results. This cascade reaction system could not only facilitate the in situ removal of the co-product benzaldehyde, enhancing the economic viability of the reaction, but also establish a novel pathway for synthesizing high-value phenyl-serine derivatives. In our study, nearly 95 % of benzylamine was converted, yielding over 54 % of 3-Phenylserine under the optimized conditions cascade reaction.


Assuntos
Glicina Hidroximetiltransferase , Serina , Serina/análogos & derivados , Serina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Benzilaminas , Fosfato de Piridoxal
10.
Front Biosci (Landmark Ed) ; 28(9): 196, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37796681

RESUMO

BACKGROUND: Serine hydroxymethyltransferase (SHMT) is a serine-glycine-one-carbon metabolic enzyme in which SHMT1 and SHMT2 encode the cytoplasmic and mitochondrial isoenzymes, respectively. SHMT1 and SHMT2 are key players in cancer metabolic reprogramming, and thus are attractive targets for cancer therapy. However, the role of SHMT in patients with renal cell carcinoma (RCC) has not been fully elucidated. We aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of SHMT1 and SHMT2 in patients with kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), and kidney renal papillary cell carcinoma (KIRP); elucidate the association between SHMT expression and RCC; and identify potential new targets for clinical RCC treatment. METHODS: Several online databases were used for the analysis, including cBioPortal, TRRUST, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS: SHMT1 and SHMT2 transcript levels were significantly down- and upregulated, respectively, in patients with KICH, KIRC, and KIRP, based on sample type, individual cancer stage, sex, and patient age. Compared to men, women with KIRC and KIRP showed significantly up- and downregulated SHMT1 transcript levels, respectively. However, SHMT2 transcript levels were significantly upregulated in the patients mentioned above. KIRC and KIRP patients with high SHMT1 expression had longer survival periods than those with low SHMT1 expression. In patients with KIRC, the findings were similar to those mentioned above. However, in KICH patients, the findings were the opposite regarding SHMT2 expression. SHMT1 versus SHMT2 were altered by 9% versus 3% (n = 66 KICH patients), 4% versus 4% (n = 446 KIRC patients), and 6% versus 7% (n = 280 KIRP patients). SHMT1 versus SHMT2 promoter methylation levels were significantly up- and downregulated in patients with KIRP versus KIRC and KIRP, respectively. SHMT1, SHMT2, and their neighboring genes (NG) formed a complex network of interactions. The molecular functions of SHMT1 and its NG in patients with KICH, KIRC, and KIRP, included clathrin adaptor, metalloendopeptidase, and GTPase regulator activities; lipid binding, active transmembrane transporter activity, and lipid transporter activity; and type I interferon receptor binding, integrin binding, and protein heterodimerization, respectively. Their respective Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were involved in lysosome activity, human immunodeficiency virus 1 infection, and endocytosis; coronavirus disease 2019 and neurodegeneration pathways (multiple diseases); and RIG-I-like receptor signaling pathway, cell cycle, and actin cytoskeleton regulation. The molecular functions of SHMT2 and its NG in patients with KICH, KIRC, and KIRP included cell adhesion molecule binding and phospholipid binding; protein domain-specific binding, enzyme inhibitor activity, and endopeptidase activity; and hormone activity, integrin binding, and protein kinase regulator activity, respectively. For patients with KIRC versus KIRP, the KEGG pathways were involved in cAMP and calcium signaling pathways versus microRNAs (MiRNAs) in cancer cells and neuroactive ligand-receptor interactions, respectively. We identified the key transcription factors of SHMT1 and its NG. CONCLUSIONS: SHMT1 and SHMT2 expression levels were different in patients with RCC. SHMT1 and SHMT2 may be potential therapeutic and prognostic biomarkers in these patients. Transcription factor (MYC, STAT1, PPARG, AR, SREBF2, and SP3) and miRNA (miR-17-5P, miR-422, miR-492, miR-137, miR-30A-3P, and miR-493) regulations may be important strategies for RCC treatment.


Assuntos
COVID-19 , Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Masculino , Humanos , Feminino , Carcinoma de Células Renais/genética , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Integrinas , Lipídeos
11.
Cancer Sci ; 114(12): 4583-4595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752684

RESUMO

Amplification of amino acids synthesis is reported to promote tumorigenesis. The serine/glycine biosynthesis pathway is a reversible conversion of serine and glycine catalyzed by cytoplasmic serine hydroxymethyltransferase (SHMT)1 and mitochondrial SHMT2; however, the role of SHTM1 in renal cell carcinoma (RCC) is still unclear. We found that low SHMT1 expression is correlated with poor survival of RCC patients. The in vitro study showed that overexpression of SHMT1 suppressed RCC proliferation and migration. In the mouse tumor model, SHMT1 significantly retarded RCC tumor growth. Furthermore, by gene network analysis, we found several SHMT1-related genes, among which homeobox D8 (HOXD8) was identified as the SHMT1 regulator. Knockdown of HOXD8 decreased SHMT1 expression, resulting in faster RCC growth, and rescued the SHMT1 overexpression-induced cell migration defects. Additionally, ChIP assay found the binding site of HOXD8 to SHMT1 promoter was at the -456~-254 bp region. Taken together, SHMT1 functions as a tumor suppressor in RCC. The transcription factor HOXD8 can promote SHMT1 expression and suppress RCC cell proliferation and migration, which provides new mechanisms of SHMT1 in RCC tumor growth and might be used as a potential therapeutic target candidate for clinical treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Glicina , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Proteínas de Homeodomínio/genética , Neoplasias Renais/genética , Serina/metabolismo , Fatores de Transcrição
12.
Mol Plant Pathol ; 24(11): 1359-1369, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37404045

RESUMO

Our previous study identified an evolutionarily conserved C4HC3-type E3 ligase, named microtubule-associated E3 ligase (MEL), that regulates broad-spectrum plant resistance against viral, fungal and bacterial pathogens in multiple plant species by mediating serine hydroxymethyltransferase (SHMT1) degradation via the 26S proteasome pathway. In the present study, we found that NS3 protein encoded by rice stripe virus could competitively bind to the MEL substrate recognition site, thereby inhibiting MEL interacting with and ubiquitinating SHMT1. This, in turn, leads to the accumulation of SHMT1 and the repression of downstream plant defence responses, including reactive oxygen species accumulation, mitogen-activated protein kinase pathway activation, and the up-regulation of disease-related gene expression. Our findings shed light on the ongoing arms race between pathogens and demonstrate how a plant virus can counteract the plant defence response.


Assuntos
Oryza , Vírus de Plantas , Tenuivirus , Tenuivirus/genética , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vírus de Plantas/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia
13.
Biochem Biophys Res Commun ; 671: 160-165, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37302290

RESUMO

One-carbon metabolism is essential for our human cells to carry out nucleotide synthesis, methylation, and reductive metabolism through one-carbon units, and these pathways ensure the high proliferation rate of cancer cells. Serine hydroxymethyltransferase 2 (SHMT2) is a key enzyme in one-carbon metabolism. This enzyme can convert serine into a one-carbon unit bound to tetrahydrofolate and glycine, ultimately supporting the synthesis of thymidine and purines and promoting the growth of cancer cells. Due to SHMT2's crucial role in the one-carbon cycle, it is ubiquitous in human cells and even in all organisms and highly conserved. Here, we summarize the impact of SHMT2 on the progression of various cancers to highlight its potential use in the development of cancer treatments.


Assuntos
Glicina Hidroximetiltransferase , Processamento de Proteína Pós-Traducional , Humanos , Proliferação de Células , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Serina/metabolismo
14.
J Cell Physiol ; 238(7): 1558-1566, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183313

RESUMO

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, participates as a cofactor to one carbon (1C) pathway that produces precursors for DNA metabolism. The concerted action of PLP-dependent serine hydroxymethyltransferase (SHMT) and thymidylate synthase (TS) leads to the biosynthesis of thymidylate (dTMP), which plays an essential function in DNA synthesis and repair. PLP deficiency causes chromosome aberrations (CABs) in Drosophila and human cells, rising the hypothesis that an altered 1C metabolism may be involved. To test this hypothesis, we used Drosophila as a model system and found, firstly, that in PLP deficient larvae SHMT activity is reduced by 40%. Second, we found that RNAi-induced SHMT depletion causes chromosome damage rescued by PLP supplementation and strongly exacerbated by PLP depletion. RNAi-induced TS depletion causes severe chromosome damage, but this is only slightly enhanced by PLP depletion. dTMP supplementation rescues CABs in both PLP-deficient and PLP-proficient SHMTRNAi . Altogether these data suggest that a reduction of SHMT activity caused by PLP deficiency contributes to chromosome damage by reducing dTMP biosynthesis. In addition, our work brings to light a gene-nutrient interaction between SHMT decreased activity and PLP deficiency impacting on genome stability that may be translated to humans.


Assuntos
Aberrações Cromossômicas , Glicina Hidroximetiltransferase , Vitamina B 6 , Animais , Humanos , DNA , Drosophila/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Fosfato de Piridoxal , Timidina Monofosfato/biossíntese , Vitamina B 6/farmacologia
15.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36896963

RESUMO

Cell fate and growth require one-carbon units for the biosynthesis of nucleotides, methylation reactions and redox homeostasis, provided by one-carbon metabolism. Consistently, defects in one-carbon metabolism lead to severe developmental defects, such as neural tube defects. However, the role of this pathway during brain development and in neural stem cell regulation is poorly understood. To better understand the role of one carbon metabolism we focused on the enzyme Serine hydroxymethyl transferase (Shmt), a key factor in the one-carbon cycle, during Drosophila brain development. We show that, although loss of Shmt does not cause obvious defects in the central brain, it leads to severe phenotypes in the optic lobe. The shmt mutants have smaller optic lobe neuroepithelia, partly justified by increased apoptosis. In addition, shmt mutant neuroepithelia have morphological defects, failing to form a lamina furrow, which likely explains the observed absence of lamina neurons. These findings show that one-carbon metabolism is crucial for the normal development of neuroepithelia, and consequently for the generation of neural progenitor cells and neurons. These results propose a mechanistic role for one-carbon during brain development.


Assuntos
Drosophila , Células-Tronco Neurais , Animais , Drosophila/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Carbono , Metiltransferases/metabolismo , Serina/metabolismo , Lobo Óptico de Animais não Mamíferos
16.
J Biotechnol ; 364: 40-49, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36708995

RESUMO

D-Pantothenic acid (D-PA) is an essential vitamin with wide applications. However, the biotechnological production of D-PA is still not competitive with the chemical synthesis in terms of production cost. Ketopantoate hydroxymethyltransferase is a crucial enzyme in the D-PA synthetic pathway in Escherichia coli encoded by the panB gene. Here a hot spots study was applied to a ketopantoate hydroxymethyltransferase from Corynebacterium glutamicum (CgKPHMT) to relieve the product inhibitory effect and thus improve the D-PA production. Compared with the wild type, the double-site variant CgKPHMT-K25A/E189S showed 1.8 times higher enzyme activity and 2.1 times higher catalytic efficiency, 1.88 and 3.32 times higher inhibitory constant of α-ketoisovalerate and D-PA, respectively. The D-PA yield using E. coli W3110 adopted the double-site variant was 41.17 g·L-1 within 48 h, a 9.80 g·L-1 increase. Structural analysis of K25A/E189S revealed the expansion of the entry channel and the change of the electric charge from negative to uncharged due to the substitution from glutamic acid to serine at site 189. Our study emphasized the positive roles of ketopantoate hydroxymethyltransferase in D-PA production and paved the way by analyzing critical enzymes in the synthetic pathway of E. coli to increase the D-PA yield.


Assuntos
Hidroximetil e Formil Transferases , Ácido Pantotênico , Ácido Pantotênico/química , Ácido Pantotênico/genética , Escherichia coli/metabolismo , Sequência de Bases , Hidroximetil e Formil Transferases/genética , Hidroximetil e Formil Transferases/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo
17.
Amino Acids ; 55(1): 75-88, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36528680

RESUMO

ß-hydroxy amino acids, such as serine, threonine, and phenylserine, are important compounds for medical purposes. To date, there has been only limited exploration of thermostable serine hydroxylmethyltransferase (SHMT) for the synthesis of these amino acids, despite the great potential that thermostable enzymes may offer for commercial use due to their high stability and catalytic efficiencies. ITBSHMT_1 (ITB serine hydroxylmethyltransferase clone number 1) from thermophilic and methanol-tolerant bacteria Pseudoxanthomonas taiwanensis AL17 was successfully cloned. Biocomputational analysis revealed that ITBSHMT_1 contains Pyridoxal-3'-phosphate and tetrahydrofolatebinding residues. Structural comparisons show that ITBSHMT_1 has 5 additional residues VSRQG on loop near PLP-binding site as novel structural feature which distinguish this enzyme with other characterized SHMTs. In silico mutation revealed that the fragment might have very essential role in maintaining of PLP binding on structure of ITBSHMT_1. Recombinant protein was produced in Escherichia coli Rosetta 2(DE3) in soluble form and purified using NiNTA affinity chromatography. The purified protein demonstrated the best activity at 80 °C and pH 7.5 based on the retro aldol cleavage of phenylserine. Activity decreased significantly in the presence of 3 mM transition metal ions but increased in the presence of 30 mM ß-mercaptoethanol. ITBSHMT_1 demonstrated Vmax, Km, Kcat, and Kcat/Km at 242 U/mg, 23.26 mM, 186/s, and 8/(mM.s), respectively. The aldol condensation reaction showed the enzyme's best activity at 80 °C for serine, threonine, or phenylserine, with serine synthesis showing the highest specific activity. Biocomputational analysis revealed that high intramolecular interaction within the 3D structure of ITBSHMT_1 might be correlated with the enzyme's high thermal stability. The above data suggest that ITBSHMT_1 is a potential and novel enzyme for the production of various ß-hydroxy amino acids.


Assuntos
Aminoácidos , Glicina Hidroximetiltransferase , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Serina/metabolismo , Treonina/metabolismo
18.
Neurol Res ; 45(5): 415-422, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36417280

RESUMO

OBJECTIVES: This research aimed to explore the role and potential mechanism of serine hydroxymethyltransferase 1 (SHMT1) involvement in low-grade glioma (LGG). METHODS: GEPIA were employed to analyze the expression and the correlation of LGG patient survival with the levels of SHMT1 in LGG based on the The Cancer Genome Atlas (TCGA) database. qRT-PCR and western blot were used to detect the expression of SHMT1 in LGG cells. Clone formation, EdU staining, MTT, Transwell and wound healing assays were conducted to analyze the proliferation, cell activity, migration and invasion of LGG cells. KEEG analysis was performed for enrichment pathways of SHMT1 in LGG. RESULTS: SHMT1 was up-regulated in LGG tissues and cells, and SHMT1 level was negatively correlated with survival of patients with LGG. SHMT1 overexpression evidently promoted cell proliferation, migration and invasion, whereas SHMT1 silence obtained the opposite results. Next, KEEG analysis revealed that SHMT1 activated the mTORC1 pathway in LGG. SHMT1 overexpression significantly promoted the phosphorylation of downstream proteins (P70SK6 and S6) in LGG cells. Further, inhibition of the mTORC1 signaling pathway partially abolished the promotion of LGG progression by SHMT1 overexpression. CONCLUSION: SHMT1 promoted proliferation, invasion and migration of LGG cells via activating mTORC1 signaling pathway. This provided a novel perspective for the treatment of LGG.


Assuntos
Glioma , Glicina Hidroximetiltransferase , Humanos , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Glioma/metabolismo , Proliferação de Células/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
19.
Angew Chem Int Ed Engl ; 62(2): e202213855, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36367520

RESUMO

l-threonine aldolase (LTA) catalyzes C-C bond synthesis with moderate diastereoselectivity. In this study, with LTA from Cellulosilyticum sp (CpLTA) as an object, a mutability landscape was first constructed by performing saturation mutagenesis at substrate access tunnel amino acids. The combinatorial active-site saturation test/iterative saturation mutation (CAST/ISM) strategy was then used to tune diastereoselectivity. As a result, the diastereoselectivity of mutant H305L/Y8H/V143R was improved from 37.2 %syn to 99.4 %syn . Furthermore, the diastereoselectivity of mutant H305Y/Y8I/W307E was inverted to 97.2 %anti . Based on insight provided by molecular dynamics simulations and coevolution analysis, the Prelog rule was employed to illustrate the diastereoselectivity regulation mechanism of LTA, holding that the asymmetric formation of the C-C bond was caused by electrons attacking the carbonyl carbon atom of the substrate aldehyde from the re or si face. The study would be useful to expand LTA applications and guide engineering of other C-C bond-forming enzymes.


Assuntos
Aminoácidos , Glicina Hidroximetiltransferase , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Mutação , Mutagênese , Aminoácidos/química , Domínio Catalítico , Especificidade por Substrato
20.
Sci Adv ; 8(50): eabm7902, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525488

RESUMO

The contribution of nutrient availability to control epidermal cell proliferation, inflammation, and hyperproliferative diseases remains unknown. Here, we studied extracellular serine and serine/glycine metabolism using human keratinocytes, human skin biopsies, and a mouse model of psoriasis-like disease. We focused on a metabolic enzyme, serine hydroxymethyltransferase (SHMT), that converts serine into glycine and tetrahydrofolate-bound one­carbon units to support cell growth. We found that keratinocytes are both serine and glycine auxotrophs. Metabolomic profiling and hypoxanthine supplementation indicated that SHMT silencing/inhibition reduced cell growth through purine depletion, leading to nucleotide loss. In addition, topical application of an SHMT inhibitor suppressed both keratinocyte proliferation and inflammation in the imiquimod model and resulted in a decrease in psoriasis-associated gene expression. In conclusion, our study highlights SHMT2 activity and serine/glycine availability as an important metabolic hub controlling both keratinocyte proliferation and inflammatory cell expansion in psoriasis and holds promise for additional approaches to treat skin diseases.


Assuntos
Psoríase , Dermatopatias , Camundongos , Animais , Humanos , Serina/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Psoríase/patologia , Glicina/farmacologia , Glicina/metabolismo , Inflamação/patologia , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA